Quadratic and symplectic structures on 3-(Hom)–<i>ρ</i>-Lie algebras
نویسندگان
چکیده
Our purpose in this paper is the generalization of notions quadratic and symplectic structures to case 3-(Hom)-$\rho$-Lie algebras. We describe some properties them by expressing related lemmas theorems. Also, we introduce concept 3-pre-(Hom)-$\rho$-Lie algebras define their representation.
منابع مشابه
Symplectic structures on quadratic Lie algebras
We study quadratic Lie algebras over a field K of null characteristic which admit, at the same time, a symplectic structure. We see that if K is algebraically closed every such Lie algebra may be constructed as the T∗-extension of a nilpotent algebra admitting an invertible derivation and also as the double extension of another quadratic symplectic Lie algebra by the one-dimensional Lie algebra...
متن کاملCharacteristically Nilpotent Lie Algebras and Symplectic Structures
We study symplectic structures on characteristically nilpotent Lie algebras (CNLAs) by computing the cohomology space H(g, k) for certain Lie algebras g. Among these Lie algebras are filiform CNLAs of dimension n ≤ 14. It turns out that there are many examples of CNLAs which admit a symplectic structure. A generalization of a sympletic structure is an affine structure on a Lie algebra.
متن کاملSymplectic Reflection Algebras and Affine Lie Algebras
These are the notes of my talk at the conference “Double affine Hecke algebras and algebraic geometry” (MIT, May 18, 2010). The goal of this talk is to discuss some results and conjectures suggesting that the representation theory of symplectic reflection algebras for wreath products categorifies certain structures in the representation theory for affine Lie algebras. These conjectures arose fr...
متن کاملOn Contact and Symplectic Lie Algeroids
In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...
متن کاملNecklace Lie Algebras and Noncommutative Symplectic Geometry
Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from noncommutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2021
ISSN: ['0022-2488', '1527-2427', '1089-7658']
DOI: https://doi.org/10.1063/5.0057379